Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4360, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928364

RESUMO

Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.


Assuntos
Cromossomos Artificiais Humanos , Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cromossomos Artificiais Humanos/genética , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Sarcolema/metabolismo
2.
Nat Commun ; 13(1): 1841, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383174

RESUMO

Trans-chromosomic (Tc) mice carrying mini-chromosomes with megabase-sized human immunoglobulin (Ig) loci have contributed to the development of fully human therapeutic monoclonal antibodies, but mitotic instability of human mini-chromosomes in mice may limit the efficiency of hybridoma production. Here, we establish human antibody-producing Tc mice (TC-mAb mice) that stably maintain a mouse-derived, engineered chromosome containing the entire human Ig heavy and kappa chain loci in a mouse Ig-knockout background. Comprehensive, high-throughput DNA sequencing shows that the human Ig repertoire, including variable gene usage, is well recapitulated in TC-mAb mice. Despite slightly altered B cell development and a delayed immune response, TC-mAb mice have more subsets of antigen-specific plasmablast and plasma cells than wild-type mice, leading to efficient hybridoma production. Our results thus suggest that TC-mAb mice offer a valuable platform for obtaining fully human therapeutic antibodies, and a useful model for elucidating the regulation of human Ig repertoire formation.


Assuntos
Anticorpos Monoclonais , Cadeias Pesadas de Imunoglobulinas , Animais , Cromossomos Artificiais de Levedura , Humanos , Hibridomas , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/genética , Camundongos , Camundongos Transgênicos
3.
Exp Anim ; 71(2): 184-192, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34819403

RESUMO

The pathogenesis of endometriosis has not been fully elucidated. We focused on the behavior of the ectopic endometrium, that is, the origin of the endometriotic lesion, before adhering to the peritoneal cavity. To observe lesion formation in the very early phase, we developed a novel endometriosis animal model using bioluminescence technology. We established a new transgenic mouse that expressed Emerald luciferase (ELuc) under the control of the CAG promoter. This transgenic mouse, called the CAG-ELuc mouse, showed strong bioluminescence emission; we succeeded in tracing the lesion location by the emission of ELuc. The accuracy of tracing by ELuc was high (57.7-100% of correspondence) and depended on the dosage of E2 administration. In the very early phase after transplantation, the process of lesion formation can be observed non-invasively and chronologically. We have verified that the preferred location of the uterus (transplanted grafts) was fixed immediately after the transplantation of the grafts.


Assuntos
Endometriose , Animais , Modelos Animais de Doenças , Endometriose/genética , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Luciferases/genética , Camundongos , Camundongos Transgênicos
4.
Sci Rep ; 11(1): 20050, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625612

RESUMO

Mammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.


Assuntos
Cromossomos Artificiais , Cromossomos/genética , Células-Tronco Embrionárias/metabolismo , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Recombinação Genética , Animais , Centrômero , Células-Tronco Embrionárias/citologia , Feminino , Células Germinativas , Masculino , Camundongos , Camundongos Endogâmicos ICR
5.
Br J Pharmacol ; 178(21): 4335-4351, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34232502

RESUMO

BACKGROUND AND PURPOSE: P-glycoprotein (P-gp) exhibits a broad substrate specificity and affects pharmacokinetics, especially intestinal absorption. However, prediction, in vivo, of P-gp-mediated drug-drug interaction (DDI) and non-linear absorption at the preclinical stage, is challenging. Here we evaluate the use of human MDR1 mouse artificial chromosome (hMDR1-MAC) mice carrying human P-gp and lacking their own murine P-gp to quantitatively predict human P-gp-mediated DDI and non-linear absorption. EXPERIMENTAL APPROACH: The P-gp substrates (aliskiren, betrixaban, celiprolol, digoxin, fexofenadine and talinolol) were administered orally to wild-type, Mdr1a/b-knockout (KO) and hMDR1-MAC mice, and their plasma concentrations were measured. We calculated the ratio of area under the curve (AUCR) in mice (AUCMdr1a/b-KO /AUCwild-type or AUCMdr1a/b-KO /AUChMDR1-MAC ) estimated as attributable to complete P-gp inhibition and the human AUCR with and without P-gp inhibitor administration. The correlations of AUCRhuman with AUCRwild-type and AUCRhMDR1-MAC were investigated. For aliskiren, betrixaban and celiprolol, the Km and Vmax values for P-gp in hMDR1-MAC mice and humans were optimized from different dosing studies using GastroPlus. The correlations of Km and Vmax for P-gp between human and hMDR1-MAC mice were investigated. KEY RESULTS: A better correlation between AUCRhuman and AUCRhMDR1-MAC (R2 = 0.88) was observed. Moreover, good relationships of Km (R2 = 1.00) and Vmax (R2 = 0.98) for P-gp between humans and hMDR1-MAC mice were observed. CONCLUSIONS AND IMPLICATIONS: These results suggest that P-gp-mediated DDI and non-linear absorption can be predicted using hMDR1-MAC mice. These mice are a useful in vivo tool for quantitatively predicting P-gp-mediated disposition in drug discovery and development.


Assuntos
Absorção Intestinal , Preparações Farmacêuticas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Interações Medicamentosas , Camundongos
6.
Theriogenology ; 86(8): 2083-90, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27527405

RESUMO

The rat is widely used as a laboratory animal for research. In particular, genetically engineered rats are essential for production of animal models of several diseases. Although embryo manipulation techniques are needed to produce them, such technology for rat preimplantation embryos is not as advanced as it is for mouse embryos. One reason is that in vitro culture systems for preimplantation embryos are limited in rats. Therefore, we intended to develop a new culture system for rat preimplantation embryos focusing on supplementation of amino acids as nutrition to the culture media. First, we found that taurine, glycine, glutamate, and alanine were abundant in the oviductal fluid of Wistar rats. The profile of taurine and these three amino acids was unchanged during the estrous cycle and from Days 0 to 3 of pregnancy (Day 0; vaginal plug was confirmed). Second, we assessed the effect of phosphate and phenol red on the development of rat zygotes and confirmed that they caused two-cell block. Third, we examined the effect of changing the medium on zygote development because addition of amino acids into culture medium causes ammonium accumulation, which is detrimental to embryo development. Blastocyst formation was suppressed in cultures with no medium change (P = 0.004; decreased to approximately one-fourth of that with medium change). Fourth, we examined the effect of supplementation of these three amino acids and taurine to modified potassium simplex optimized medium (KSOM). The zygote development rates were increased by the three amino acids and taurine in a concentration-dependent manner at 48, 72, and 96 hours (P = 0.001, 0.005, and 0.009, respectively) in culture. Finally, we confirmed that blastocysts cultured in modified KSOM had the capacity to develop to full term after implantation. These results showed that not only the supply of nutrients but also removal of wastes and toxicants is important for culture of rat preimplantation embryos.


Assuntos
Aminoácidos/farmacologia , Meios de Cultura/química , Embrião de Mamíferos/efeitos dos fármacos , Taurina/farmacologia , Aminoácidos/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Transferência Embrionária , Tubas Uterinas , Feminino , Gravidez , Ratos , Ratos Wistar
7.
Kidney Int ; 64(4): 1302-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12969148

RESUMO

BACKGROUND: The renal pathology of human heme oxygenase (HO)-1 deficiency is characterized by advanced tubulointerstitial injury, whereas the glomerular structures are affected little. These facts suggest that the renal tubuli are dependent on intrinsic HO-1 production for their survival under oxidative stresses. METHODS: We compared the patterns of HO-1 expression by primary cultured human mesangial cells (HMCs) and renal proximal tubular epithelial cells (HRPTECs) in vitro. Furthermore, the cytoprotective roles of HO-1 induced in these cells were evaluated by stress-induced cytotoxicity assays. HO-1 expressions in HRPTECs and HMCs were evaluated by immunoblotting, and by reverse transcriptase (RT) and/or real time polymerase chain reaction (PCR). RESULTS: In HRPTECs, both HO-1 mRNA expression and protein production peaked at around 12 h and persisted until 24 h after hemin stimulation. In contrast, HO-1 mRNA expression and protein production by HMCs peaked at 4 h and 6 h respectively, and the levels declined rapidly, being undetectable at 24 h. The peak level of HO-1 expression was significantly higher in HRPTECs than in HMCs. Oxidative stress-induced cell injury in HRPTECs was significantly reduced when HO-1 production had been induced prior to the culture. In contrast, HO-1 induction had little cytoprotective effect on HMCs. Tin protoporphyrin (SnPP), an inhibitor of HO function, significantly reversed the cytoprotection by HO-1. CONCLUSION: These data suggest that HRPTECs are more susceptible to oxidative stress and are significantly more dependent on HO-1 for protection against noxious stimuli than HMCs. Collectively, these results indicate that HO-1 is an important protective factor for kidney tissue, in particular, renal tubular epithelial cells.


Assuntos
Citoproteção , Heme Oxigenase (Desciclizante)/metabolismo , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Estresse Oxidativo , Células Cultivadas , Citoproteção/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Mesângio Glomerular/enzimologia , Mesângio Glomerular/patologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase-1 , Hemina/farmacologia , Humanos , Proteínas de Membrana , Metaloporfirinas/farmacologia , Protoporfirinas/farmacologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...